(-3x^2-2x+3)/((x^2+1)^2)=0

Simple and best practice solution for (-3x^2-2x+3)/((x^2+1)^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3x^2-2x+3)/((x^2+1)^2)=0 equation:



(-3x^2-2x+3)/((x^2+1)^2)=0
Domain of the equation: ((x^2+1)^2)!=0
x∈R
We multiply all the terms by the denominator
(-3x^2-2x+3)=0
We get rid of parentheses
-3x^2-2x+3=0
a = -3; b = -2; c = +3;
Δ = b2-4ac
Δ = -22-4·(-3)·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{10}}{2*-3}=\frac{2-2\sqrt{10}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{10}}{2*-3}=\frac{2+2\sqrt{10}}{-6} $

See similar equations:

| 5e+2=2e+7 | | 5e-2=2e+6 | | 2x2+3x.8x-1=16 | | 4(x-3)=3x+3-2x | | 20x+3=10-8x | | -4x-7=3x-49 | | (2x-2)=(3x-9) | | (4x+3)=(x+21) | | (x+9)=19 | | 4x^2=2069 | | 4x2-3x+15=0 | | 3x+2x+5-5=40-5 | | y−16=18 | | (3x)x=50 | | (6x+8)=(6x-7) | | 10(17+x)-9=181 | | (6x+8)=7x-7) | | 32x=160+400 | | 5-(-5+z)-z=0 | | 8x=19+41 | | 53x+8=25 | | 36x+6=-30 | | 4e2-7e=5 | | –7v+5=–7v | | -4x-11=-2(2x-3)+4 | | 1/4x-1/7(2x-4)=1 | | 16x+4=8-12 | | x+1=2x1 | | 2•(3-2x)/3=6 | | 2×(3-2x)/3=6 | | (-x+2)/4=12 | | 15/(-x)=-5 |

Equations solver categories